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Preliminares

Definition (Almost anti-Hermitian Manifold)
An almost anti-Hermitian manifold is a triple (M, g , J), where M
is a differentiable manifold of real dimension 2n, J is an
almost complex structure on M and g is an anti-Hermitian
metric on (M, J); that is

g(JX, JY) � −g(X,Y), ∀X,Y ∈ X(M), (1)

or equivalently, J is symmetric with respect to g.

If additionally, J is integrable, then the triple (M, g , J) is called
anti-Hermitian manifold or complex Norden manifold.
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Signature
If (M, g , J) is an almost anti-Hermitian manifold, it is
straightforward to check that the signature of g is (n , n); i.e. g
is a neutral metric.
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Linear algebra
The linear (algebra) model of an almost anti-Hermitian
manifold is given by

1. Rn ,n :� (R2n , ϕ � (x1 , y1 , . . . , xn , yn), 〈·, ·〉),
2. Complex structure: Jxi � yi y J yi � −xi ,
3. Inner product: 〈xi , x j〉 � δi , j , 〈yi , y j〉 � −δi , j , 〈xi , y j〉 � 0.

Equivalently, (Cn , ϕ̂ � (z1 , . . . , zn))with the C-symmetric
inner product 〈〈·, ·〉〉

〈〈z , z〉〉 � z2
1 + . . . + z2

n .
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Definition (Anti-Kähler manifold)
An Anti-Kähler manifold is an almost anti-Hermitian manifold
(M, g , J) such that J is parallel with respect to the Levi-Civita
connection of the pseudo-Riemannian manifold (M, g).

Let (M, g , J) be an almost anti-Hermitian manifold. From now
on, let us denote by ∇ the Levi-Civita connection of (M, g)

Integrability
Note that an anti-Kähler manifold (M, g , J) satisfies that J is
integrable:

N(X,Y) :� [JX, JY] − J[JX,Y] − J[X, JY] − [X,Y] (2)
� (∇JX J)Y − J(∇X J)Y − (∇JY J)X + J(∇Y J)X,

for all X,Y in X(M).
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Lemma

Let (M, g , J) be an almost anti-Hermitian manifold. Then (∇X J) is
a symmetric operator with respect to the metric g; i.e.

g((∇X J)Y, Z) � g(Y, (∇X J)Z), ∀X,Y, Z ∈ X(M). (3)

Lemma

Let (M, g , J) be an almost anti-Hermitian manifold. Then,
(M, g , J) is an anti-Kähler manifold if and only if

(∇JX J)Y � ε J(∇X J)Y, ∀X,Y ∈ X(M) (4)

where ε is a real constant.
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Definition (Twin metric)
Let (M, g , J) be an almost anti-Hermitian manifold. The tensor
defined by the formula g̃(X,Y) :� g(JX,Y), ∀X,Y ∈ X(M) is
symmetric because of equation (1), we have even more,
(M, g̃ , J) is an almost anti-Hermitian manifold. The metric g̃
is called associated metric, twin metric or dual metric.

The Levi-Civita connection of g and g̃
Let (M, g , J) be an anti-Kähler manifold and g̃ its twin metric.
The Levi-Civita connection of the twin metric coincides with
the Levi-Civita connection of g. In particular (M, g̃ , J) is also
an anti-Kähler manifold.
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Pureness
By using before fact, it follows that the Riemannian curvature
tensor of an anti-Kähler manifold (M, g , J) is pure; i.e. for
smooth vector fields X,Y, Z,W

R(JX,Y, Z,W) � R(X, JY, Z,W)
� R(X,Y, JZ,W) � R(X,Y, Z, JW).
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Left invariant geometric structures on Lie groups

We now proceed to consider Lie groups endowed with left
invariant geometry structures. Let G be a Lie group and let us
denote by g its Lie algebra, which is the finite dimensional real
vector space consisting of all smooth vector fields invariant
under left translations Lp , p ∈ G. If g is a left invariant
pseudo-Riemannian metric on G; i.e. the left translations are
isometries of (G, g), then g is completely determined by the
inner product 〈·, ·〉 on g induced by g:

〈X,Y〉 � g(X,Y), ∀X,Y ∈ g.

An almost complex structure J on a Lie group G is said to be left
invariant if (d Lp) ◦ J � J ◦ (d Lp) for all p ∈ G; equivalently for
all X ∈ g, J ◦ X ∈ g.
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Proposition

Let G be a 2n-dimensional Lie group.

1. There exist a left invariant metric g on G and a left invariant
almost complex structure J on G such that (G, g , J) is an almost
anti-Hermitian manifold.

2. If J is an almost left invariant complex structure on G, then there
exists a left invariant metric g such that (G, g , J) is an almost
anti-Hermitian manifold.

3. If g is a left invariant metric of signature (n , n) on G, then there
exists an almost left invariant complex structure J on G such
that (G, g , J) is an almost anti-Hermitian manifold.
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Definition (Abelian complex structure)
A left invariant almost complex structure J on a Lie Group G
is called abelianwhen it satisfies

[JX, JY] � [X,Y], ∀X,Y ∈ g. (5)

Note that an abelian complex structure J on a Lie group G is
in fact integrable, hence (G, J) is a complex manifold, but
(G, J) is not a complex Lie group (unless G is a commutative
Lie group when it is connected).
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Definition (Bi-invariant complex structure)
A left invariant almost complex structure J on a Lie group is
called bi-invariant if it satisfies

[JX,Y] � J[X,Y](� [X, JY]), ∀X,Y ∈ g. (6)

Note that a bi-invariant complex structure J on a Lie group G
is in fact integrable, and even more, (G, J) is a complex Lie
group.
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Left invariant anti-Kähler structures on
Lie groups



Proposition

Let (g , J) be a left invariant almost anti-Hermitian structure on a
Lie group G. If any of the following conditions are satisfied:

∇JXY � −J∇XY, ∀X,Y ∈ g, (7)
∇JXY � J∇XY, ∀X,Y ∈ g, (8)

then (G, g , J) is an anti-Kähler manifold, and even more so, J is an
abelian complex structure in the case of the condition (7) and J is a
bi-invariant complex structure in the case of the condition (8).
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Proposition

Let (g , J) be a left invariant anti-Kähler structure on a Lie group G
such that J is abelian complex structure. Then (G, g , J) satisfies the
condition (7); i.e.

∇JXY � −J∇XY, ∀X,Y ∈ g

Proposition
Let (g , J) a left invariant anti-Kähler structure on a Lie group G
such that J is bi-invariant complex structure. Then (G, g , J)
satisfies the condition (8); i.e.

∇JXY � J∇XY, ∀X,Y ∈ g
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Anti-Kähler geometry on complex Lie groups
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Proposition

Let (g , J) be a left invariant almost anti-Hermitian structure on a
Lie group G with J being a bi-invariant complex structure on G.
Then (G, g , J) is an anti-Kähler manifold.

Wild classification
Combining before propositions with well-known results of
representation of algebras and wild problems (also known as
hopeless problems), we have that the classification of anti-Kähler
manifolds could be a wild problem.
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Proposition
Let G be a Lie group admitting a left invariant anti-Kähler-Einstein
structure (g , J) with non-vanishing cosmological constant and g
being a bi-invariant metric. Then, G is a semisimple Lie group and J
is a bi-invariant complex structure on G.
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Anti-Kähler geometry and abelian complex
structures
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Proposition

Let G be a Lie group admitting a left invariant anti-Kähler structure
(g , J) with J being an abelian complex structure on G. Then the
Levi-Civita connection of (G, g) is completely determined just by the
complex structure J and the Lie algebra g:

∇XY �
1
2 ([X,Y] − J[X, JY]) , ∀X,Y ∈ g (9)
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Proposition (Obstruction)
If G is a Lie group admitting a left invariant anti-Kähler structure
(g , J) with J being an abelian complex structure, then g is a
unimodular Lie algebra; i.e. forall X in g

Tr(adX) � 0.

Corollary
If G is a Lie group admitting a left invariant anti-Kähler structure
(g , J) with J being an abelian complex structure, then

B(JX, JY) � −B(X,Y), ∀X,Y ∈ g,

where B is the Killing form of g.

21



Curvature

Proposition
If G is a Lie group admitting a left invariant anti-Kähler structure
(g , J) with J being an abelian complex structure, then for all X,Y, Z
in g

∇X∇YZ � ∇Y∇XZ.
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Theorem

Let (g , J) be a left invariant anti-Kähler structure on a Lie group G
such that J is an abelian complex structure. Then (G, g) is a flat
pseudo-Riemannian manifold.

Corollary (Obstruction)
Let (g , J) be a left invariant anti-Kähler structure on a Lie group G
such that J is an abelian complex structure, then for all X,Y, Z in g

[J[X,Y], Z] � J[[X,Y], Z].
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Some 3-forms associated with left invariant
anti-Kähler structures on Lie groups
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Let G be a Lie group admitting a left invariant anti-Kähler
structure (g , J). We begin here by defining a family of bilinear
maps on g in the following way: let {a1 , . . . , a4} be real
constants and B : g × g→ g the bilinear map on g given by

B(X,Y) � a1∇XY + a2∇JXY + a3 J∇XY + a4 J∇JXY.

and let β be the covariant 3-tensor on g defined by

β(X,Y, Z) � 〈B(X,Y), Z〉, ∀X,Y, Z ∈ g.

The skew-symmetric part of β is a multiple of

θ(X,Y, Z) � 〈B(X,Y), Z〉 + 〈B(Y, Z),X〉 + 〈B(Z,X),Y〉.(10)
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We want to highlight an important member in this family of
skew-symmetric tensors which is defined from the particular
bilinear map

B(X,Y) � ∇JXY + J∇XY. (11)

In this case, we have that β is a pure tensor on g, and so θ is a
pure skew-symmetric 3-tensor on g.

Now, we consider on g the complex vector space structure
induced by J; (a +

√
−1 b) · X :� aX + JbX and

θ̂(X,Y, Z) � θ(X,Y, Z) −
√
−1 θ(JX,Y, Z). In this way, we have

on (g,C) a complex skew-symmetric 3-tensor and θ is its real
part.

Furthemore, θ has the following very nice expression: for all
X,Y, Z in g

θ(X,Y, Z) � 〈[JX,Y], Z〉 + 〈[JY, Z],X〉 + 〈[JZ,X],Y〉.(12)
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Theorem
Let (g , J) be a left invariant almost anti-Hermitian structure on a
Lie group G and let θ be its 3-tensor as is defined in (10) from (11).
Then, (G, g , J) is an anti-Kähler manifold if and only if θ is
skew-symmetric and pure on g; equivalently,

θ(X,Y, Z) � −θ(X, Z,Y) (13)
and

θ(JX,Y, Z) � θ(X, JY, Z) (14)

for all X,Y, Z in g.
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Corollary
Let (g , J) be a left invariant almost anti-Hermitian structure on a
Lie group G such that its 3-tensor θ vanishes identically on g. Then
(G, g , J) is an anti-Kähler manifold.

Corollary

Let (g , J) be a left invariant almost anti-Hermitian structure on
4-dimensional Lie group G. Then, (G, g , J) is an anti-Kähler
manifold if and only if its 3-tensor θ as is defined in (10) vanishes
identically on g.
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Left invariant anti-Kähler structures on
four dimensional Lie groups



Let G be a real Lie group of dimension four which admits a left
invariant anti-Kähler structure (g , J). As before, let us denote
by 〈·, ·〉 the inner product on g induced by the left invariant
metric g on G.

There exists an orthonormal basis of the Lie algebra g of G of
the form B� {X, JX,Y, JY} with X and Y are spacelike, and so,
we have [

g
]
B
� diag (1,−1, 1,−1),

and
[J]B � diag ( j, j),

where j �

[
0 −1
1 0

]
.
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From above corollary we have the 3-form θ vanishes on g. In
particular, we have θ(U,V, JV) � 0 for all U,V in g; equivalently

〈[V,U],V〉 � −〈[V, JU], JV〉.

It follows

[X, JX] � a Y + b JY,
[X,Y] � t1 X + t2 JX + t3 Y + t4 JY,
[X, JY] � −t2 X + t1 JX + t5 Y + t6 JY,
[JX,Y] � t7 X + t8 JX − t4 Y + t3 JY,
[JX, JY] � −t8 X + t7 JX − t6 Y + t5 JY,
[Y, JY] � c X + d JX,

(15)

Besides, by using again the 3-form θ, since θ(U,U,V) � 0 for all
U,V ∈ g, we obtain

a � t2 + t7 , b � t8 − t1 ,

c � −(t4 + t5), d � t3 − t6.
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Now, computing all the Jacobi equations involving the elements
of B and considering the equalities given in (15) we obtain the
following equations

−(t8 + t1) [X, JX] − b [Y, JY] + t3∆(X,Y) + t4∆(X, JY) � 0,
(t2 − t7) [X, JX] + a [Y, JY] + t5∆(X,Y) + t6∆(X, JY) � 0,
−d [X, JX] + (t3 + t6) [Y, JY] − t1∆(X,Y) + t2∆(X, JY) � 0,
−c [X, JX] + (t4 − t5) [Y, JY] + t7∆(X,Y) − t8∆(X, JY) � 0,

(17)
where ∆(U,V) � [JU,V] − [U, JV], for all U,V ∈ g.

If {[X, JX] , [Y, JY] ,∆(X,Y),∆(X, JY)} is a linearly independent
set, then we have that all the constants are zero and so g is the
four dimensional abelian Lie algebra.
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From here on, we assume that this set is linearly dependent and
we study the set of the 4-uplas (λ1 , λ2 , λ3 , λ4) satisfying

λ1[X, JX] + λ2[Y, JY] + λ3∆(X,Y) + λ4∆(X, JY) � 0.

This set coincides with the set of solutions of the homogeneous
linear system Ax � 0, where

A �

©­­­­«
0 c a −b
0 d b a
a 0 c d
b 0 d −c

ª®®®®¬
.

We have two cases to analize:
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Case 1. If at least one of the coefficients of A is non zero, we
have that the Lie algebra is

µa ,b ,ε �



[X, JX] � a Y + b JY,
[X,Y] � a JX − εb JY,
[X, JY] � −a X + εa JY,
[JX,Y] � b JX + εb Y,
[JX, JY] � −b X − εa Y,
[Y, JY] � εb X − εa JX

(18)

with ε2 � 1 and a , b ∈ R (a , b , 0). To prove this assertion, we
consider the solutions to Ax � 0 from above

v1 �

©­­­­«
−t1 − t8

t1 − t8

t3

t4

ª®®®®¬
, v2 �

©­­­­«
t2 − t7

t2 + t7

t5

t6

ª®®®®¬
, v3 �

©­­­­«
t6 − t3

t3 + t6

−t1

t2

ª®®®®¬
v4 �

©­­­­«
t4 + t5

t4 − t5

t7

−t8

ª®®®®¬
.
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It is easy to see that µa ,b ,ε is isomorphic to the Lie algebra

r−1,−1 � {[e1 , e2] � e2 , [e1 , e3] � −e3 , [e1 , e4] � −e4.
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Case 2. On the other hand, if all the coefficients of A are zero,
we have that g is the real Lie algebra underlying on the
2-dimensional complex Lie algebra aff(C). Indeed,
a � b � c � d � 0 implies that t5 � −t4, t6 � t3, t7 � −t2 and
t8 � t1, and hence

µ t1 ,t2 ,t3 ,t4 �



[X, JX] � 0,
[X,Y] � t1 X + t2 JX + t3 Y + t4 JY,

[X, JY] � −t2 X + t1 JX − t4 Y + t3 JY,

[JX,Y] � −t2 X + t1 JX − t4 Y + t3 JY,

[JX, JY] � −t1 X − t2 JX − t3 Y − t4 JY,

[Y, JY] � 0.
(19)
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